Answers

Question and Answer:

  Home  Machine Learning Engineer

⟩ Tell us why is Naïve Bayes machine learning algorithm naïve?

Naïve Bayes machine learning algorithm is considered Naïve because the assumptions the algorithm makes are virtually impossible to find in real-life data. Conditional probability is calculated as a pure product of individual probabilities of components. This means that the algorithm assumes the presence or absence of a specific feature of a class is not related to the presence or absence of any other feature (absolute independence of features), given the class variable. For instance, a fruit may be considered to be a banana if it is yellow, long and about 5 inches in length. However, if these features depend on each other or are based on the existence of other features, a naïve Bayes classifier will assume all these properties to contribute independently to the probability that this fruit is a banana. Assuming that all features in a given dataset are equally important and independent rarely exists in the real-world scenario.

 186 views

More Questions for you: