Data Warehousing

  Home  Data Warehouse  Data Warehousing


“Data Warehousing Interview Questions and Answers will guide now that Data warehouse is a repository of an organizations electronically stored data. Data warehouses are especially designed to facilitate reporting and analysis about the data of any organization. So learn Data Warehousing concepts by Data Warehousing Interview Questions and Answers and get preparation of Data Warehousing Jobs Interview.”



131 Data Warehousing Questions And Answers

42⟩ What is junk dimension? What is the difference between junk dimension and degenerated dimension?

Junk dimension: Grouping of Random flags and text attributes in a dimension and moving them to a separate sub dimension. Degenerate Dimension: Keeping the control information on Fact table ex: Consider a Dimension table with fields like order number and order line number and have 1:1 relationship with Fact table, In this case this dimension is removed and the order information will be directly stored in a Fact table in order eliminate unnecessary joins while retrieving order information.

 149 views

43⟩ What is the main difference between Inmon and Kimball philosophies of data warehousing?

Both differed in the concept of building the data warehouse.According to Kimball, Kimball views data warehousing as a constituency of data marts. Data marts are focused on delivering business objectives for departments in the organization. And the data warehouse is a conformed dimension of the data marts. Hence, a unified view of the enterprise can be obtained from the dimension modeling on a local departmental level.Inmon beliefs in creating a data warehouse on a subject-by-subject area basis. Hence, the development of the data warehouse can start with data from the online store. Other subject areas can be added to the data warehouse as their needs arise. Point-of-sale (POS) data can be added later if management decides it is necessary.

 140 views

44⟩ What is the difference between view and materialized view?

View - store the SQL statement in the database and let you use it as a table. Every time you access the view, the SQL statement executes. Materialized view - stores the results of the SQL in table form in the database. SQL statement only executes once and after that every time you run the query, the stored result set is used. Pros include quick query results.

 137 views

45⟩ What are the steps to build the data warehouse?

Gathering business requirements>>Identifying Sources>>Identifying Facts>>Defining Dimensions>>Define Attributes>>Redefine Dimensions / Attributes>>Organize Attribute Hierarchy>>Define Relationship>>Assign Unique Identifiers

 130 views

46⟩ What is the advantages data mining over traditional approaches?

Data Mining is used for the estimation of future. For example, if we take a company/business organization, by using the concept of Data Mining, we can predict the future of business in terms of Revenue (or) Employees (or) Customers (or) Orders etc.Traditional approaches use simple algorithms for estimating the future. However, it does not give accurate results when compared to Data Mining.

 156 views

49⟩ What do you mean by static and local variable?

Static variable is not created on function stack but is created in the initialized data segment and hence the variable can be shared across the multiple call of the same function. Usage of static variables within a function is not thread safe.On the other hand, local variable or auto variable is created on function stack and valid only in the context of the function call and is not shared across function calls.

 144 views

51⟩ What is a source qualifier?

When you add a relational or a flat file source definition to a mapping, you need to connect it to a Source Qualifier transformation. The Source Qualifier represents the rows that the Informatica Server reads when it executes a session.

 128 views

53⟩ What are Data Marts?

A data mart is a collection of tables focused on specific business group/department. It may have multi-dimensional or normalized. Data marts are usually built from a bigger data warehouse or from operational data.

 131 views

55⟩ What are the difference between Snow flake and Star Schema? What are situations where Snow flake Schema is better than Star Schema to use and when the opposite is true?

Star schema contains the dimension tables mapped around one or more fact tables. It is a renormalized model and no need to use complicated joins. Also queries results fast.Snowflake schema: It is the normalized form of Star schema. It contains in-depth joins, because the tables are split in to many pieces. We can easily do modification directly in the tables. We have to use complicated joins, since we have more tables.There will be some delay in processing the query.

 173 views

56⟩ What is Dimensional Modelling?

Dimensional Modelling is a design concept used by many data warehouse designers to build their data warehouse. In this design model all the data is stored in two types of tables - Facts table and Dimension table. Fact table contains the facts/measurements of the business and the dimension table contains the context of measurements i.e., the dimensions on which the facts are calculated.

 134 views

58⟩ What is On-line Redo Log?

The On-line Redo Log is a set of tow or more on-line redo files that record all committed changes made to the database. Whenever a transaction is committed, the corresponding redo entries temporarily stores in redo log buffers of the SGA are written to an on-line redo log file by the background process LGWR. The on-line redo log files are used in cyclical fashion.

 145 views