41⟩ What is a good source of surfactant information on the internet?
Check out the Surfactant Virtual Library at the link below.
“Chemical Engineering Interview Questions and Answers will guide us now that Chemical engineering is the branch of engineering that deals with the application of physical science, and life sciences such as biology, microbiology and biochemistry with mathematics, to the process of converting raw materials or chemicals into more useful or valuable forms. So learn Chemical Engineering and get preparation for job of Chemical Engineering by Chemical Engineering Interview Questions and Answers.”
Check out the Surfactant Virtual Library at the link below.
Quicklime (Calcium Oxide) is an efficient scavenger of moisture in its dehydrated state. It is also cheap, compared to orthe scavengers such as silica gel, drierite, oxazolidines, etc. It is commonly found in water sensitive paint formulations (such as polyurethanes and polyureas).
Precipitation is widely used to remove metals from waste streams. The soluble heavy-metal salts can be converted to insoluble salts that will precipitate and can then be removed by clarification, filtration, or settling.
Perhaps the most common agents used are:
1) Metal hydroxides
2) Lime or caustic soda
3) Metal sulfides
4) Alum or ferric salts
5) Phosphate or carbonate ions
The sultriness of the ambient environment is more than a comfort factor. For workers, soldiers and athletes, high levels of sultriness may result in heat stress that could very well be life threaten. To determine the actual degree of sultriness in a quantifiable manner, the Wet Bulb Globe Temperature (WBGT) index is used. It includes the effects of humidity, air speed, air temperature and the radiant heating factor (from the sun). This index was developed by the U.S. Military in the 1950's and has become widely accepted for industrial temperature measurements to protect employees. It combines three temperature readings: the wet bulb temperature; the ordinary dry bulb temperature and a black bulb globe temperature. There are also instruments available, which measure WBGT index directly, combining the three factors and their appropriate weighting values.
The normality of a solution is the number of gram-equivalent weights of the dissolved substance per liter of solution. The gram-equivalent weight of the dissolved substance is the molecular weight of the dissolved substance divided by the hydrogen equivalent of the dissolved substance. Citric acid has a molecular weight of 192.12 and it contains three hydrogen equivalents (i.e., three COOH groups). Thus, the gram equivalent weight of the citric acid dissolved in water is 192.12/3 = 64.04 grams. Therefore 0.35 Normal citric acid would have (0.35)(64.4) = 22.41 grams of citric acid per liter of solution.
An additive is anything that is added to a process that is not a basic raw material. It is usually present in such small quantities that it does not interfere with final product quality. It is usually added to act as an enhancer or to prevent some unwanted reaction. For instance, anti-foam additives are added to columns, evaporators, reactors, etc. to prevent foaming. Inhibitors are added to Styrene systems to prevent polymerization. A well-known additive is a detergent added to motor oils and gasoline to keep your engine clean.
Waste streams that contain these types of mixtures are often treated in two or more reducing tanks. Strong reducing agents such as sodium metabisulfite, sulfur dioxide, and sodium bisulfite are often used.
Often times, ferric chloride is added to such a stream. The ferric chloride aids in the formation of floc to agglomerate fine arsenic particles that can then be removed by mechanical means.
One option is to use ferrous sulfate to reduce the hexavalent chromium to a less toxic, trivalent chromium form that wills precipitate out of the solution. Trivalent chromium can then be reduced by sodium hydroxide.
The size of a vapor-liquid separator should be dictated by the anticipated flow rate of vapor and liquid from the vessel. The following sizing methodology is based on the assumption that those flow rates are known. Use a vertical pressure vessel with a length-to-diameter ratio of about 3 to 4, and size the vessel to provide about 5 minutes of liquid inventory between the normal liquid level and the bottom of the vessel (with the normal liquid level being at about the vessel's half-full level).
At the vapor outlet, provide a de-entraining mesh section within the vessel such that the vapor must pass through that mesh before it can leave the vessel. Depending upon how much liquid flow you expect, the liquid outlet line should probably have a level control valve.
For Newtonian fluids, which will have a constant viscosity at all impeller speeds, most design correlations will perform satisfactorily for viscosities up to 5,000 cP. Above 5,000 cP, estimating errors from 20% to 50% can result in the sizing of the agitator.
1. Specific Gravity
2. Fluid Viscosity
3. Phase to be dispersed
4. Solid-liquid systems
The settling velocities of the 10, 50, and 90 percent weight fractions of the particle size distribution should be available. 5. For gas systems, the standard and actual flow rates will be needed.
Some of the more common metals or other substances removed via precipitation include:
1) Aluminum
2) Arsenic
3) Barium
4) Cadmium
5) Calcium
6) Trivalent chromium
7) Hexavelent chromium
8) Copper
9) Iron
10) Lead
11) Magnesium
12) Manganese
13) Mercury
14) Nickel
15) Selenium
16) Zinc
The U.S. National Board of Pressure Vessel Inspectors recommends the following in one of their classic articles:
1. Pressure vessels should be fully stress relieved or fabricated with heads that are hot-formed or stress relieved.
2. Extreme care should be used to eliminate air from the ammonia systems; new vessels must be thoroughly purged to eliminate air contamination.
3. Ammonia should contain at least 0.2 percent water to inhibit SCC. Source: National Board of Pressure Vessel Inspectors
That chemical is sodium azide (NaN3) which is a solid propellant that can be electrically ignited to form nitrogen gas almost instantly.
Carbon dioxide reacts with water according to the following equation: CO2 + H2O --> HCO3- + H+ As the concentration of CO2 increases, so does the concentration of the H+ ion. This ion can then react with Fe in metals as follows: Fe + 2H+ --> 2H (atom) + Fe2+ As corrosion proceeds, the ferrous ions produced can react with the bicarbonate ions to form ferrous carbonate, which precipitates as a scale.
The Pitting Resistance Equivalent Index (PRE) can be used for such a comparison if the chemical make-up of each material is known. The formula for the PRE is PRE = % Cr + (3.3 x % Mo) + (30 x % N).
During the welding process, the two metal pieces being joined are subject to extreme temperatures and can cause the crystalline structure of the metal to pass through various metallurgical phases. As a result, hardening (and embrittlement) of the metal can occur to varying degrees (usually dependent on carbon content). Heat treatment is designed to reduce the hardness in the heat-affected zone of the metals and increase ductility in these sections. Various pressure vessel codes contain the specifics regarding the procedures for post-weld heat treatment. Heat is usually held for one hour per inch of thickness of the metal. The temperature used is based on the "P-number" of the metals. P-numbers are assigned based on the chemical composition of the metals. Holding temperatures can range from 1100-1350 °F (593-732 °C).
The dictionary defines "angle of repose" as "the inclination of a plane at which a body placed on the plane would remain at rest, or if in motion would roll or slide down with uniform velocity; the angle at which the various kinds of earth will stand when abandoned to them”. Applications to the chemical industry...think about the design of the conical section of a storage bin. The material would not fall out the bottom, as we may want. This concept is also important in the design of system designed to move bulk solids...for the same reasons.