This is a term that is usually used to indicate how much pressure is required to 'lift' condensate from a steam trap or other device to it's destination at a condensate return line or condensate vessel. The first image below shows a situation where a properly sized control valve is used on a steam heater. During nominal operation, the utility steam undergoes a nominal 10-25 psi pressure loss through the valve. For typical utility steam (150 psi or higher), this can leave a pressure at the steam trap exit that is often adequate to lift the condensate to its destination. For example, if the steam losses 20 psi through the valve and another 15 psi through the heater and piping, that can leave up to 265 ft of head to push the condensate to the header. In this case, there is little need for a condensate pump. On the other hand, if the control is too large, it will only be a few percent open during normal operation and the steam can undergo a pressure loss of 50-75 psi or even higher! In addition to supplying terrible control for the heater, it also reduces the available head for condensate lift. In this case, or if the steam supply pressure is relatively low, it may be necessary follow the steam trap with a separation vessel and a condensate pump to push the condensate to the return line.